
Large-scale Simulations with FLAME

Simon Coakley and Paul Richmond and Marian Gheorghe and Shawn Chin and
David Worth and Mike Holcombe and Chris Greenough

Abstract This chapter presents the latest stage of the FLAME development - the
high-performance environment FLAME-II and the parallel architecture designed for
Graphics Processing Units, FLAMEGPU. The architecture and the performances of
these two agent-based software environments are presented, together with illustra-
tive large-scale simulations for systems from biology, economy, psychology and
crowd behaviour applications.

1 Introduction

Agent-based systems are widely used in modelling, analysis and simulation of com-
plex and real-life systems. Many agent-based software environments, like MASON
[1], Repast [2], Swarm [3], NetLogo [4], FLAME [5] (just to mention a few of
them), have been developed in the last decades. The area is fast growing and there
are various survey papers on specific topics regarding agent-based systems and their
use - agent-based modelling practices, [6], agent-based modelling approaches and
associated tools [7] - or on the use of agent-based systems in electricity market
modelling [8], manufacturing control [9], hospital environments [10] etc.

FLAME is one of these many agent-based environments which is built based on
an underlying formal model, called the X-machine. One of the primary aims of the
FLAME architecture is to run on multiple hardware and software platforms and to
simulate multi-scale modelling approaches [5].

Over the years, FLAME [5] has evolved based on the requirements of different
projects starting from a position-aware framework used for biological agent mod-
elling - keratinocyte colony formation [11]; role of TGF-β1 in tissue regeneration

Simon Coakley, Paul Richmond, Marian Gheorghe, Mike Holcombe
University of Sheffield, Sheffield, UK, e-mail: p.richmond@sheffield.ac.uk

Shawn Chin, David Worth, Chris Greenough
Software Engineering Group, STFC Rutherford Apple Labs, Didcot, UK

1

2 Simon Coakley and Paul Richmond

[12]; lineage dynamics of epidermal stem cells [13]; processes used by mammalian
sperm to find the egg [14] - to a position-agnostic framework driven by a static
scheduler and message board library catering to economic models - effects of skill
upgrading in the presence of spatial labour market frictions [15]; energy shocks and
macroeconomic stabilisation policies [16]; and modelling of the European economy
[17].

Some of the functionality provided by FLAME was introduced as ad-hoc features
for particular models, while many of the architectural design and data structures
used within the framework are a direct result of iterative improvements to meet
project-specific goals. For the models it was developed for, FLAME was fit for
purpose. However, as a generic framework for agent-based modelling there is still
much room for improvement.

FLAMEGPU [18] was an early offshoot of FLAME that looked to execute agent-
based models on Graphics Processing Unit (GPU) architectures. Although they
share a common heritage, models are not fully cross-compatible.

The latest version of the framework, called FLAME-II, expands on FLAME and
FLAMEGPU, and creates a backend component which is meant to run on various
hardware architectures, including high-performance machines.

In this paper, we briefly describe the design and limitations of the initial FLAME
framework, followed by a discussion on the design of the new FLAME-II. The per-
formance of FLAME-II and FLAMEGPU are assessed by using a simple bench-
mark problem. Finally, the usage of the agent-based approach in solving complex
problems is illustrated on a set of case studies from various areas.

2 Preliminary Concepts and the Modelling Paradigm

Complex biological systems require multi-scale modelling where certain aspects
of the system are represented at a higher level, whereas others are described at
a lower level of detail [19]. The modelling approach, in this case an agent-based
model, should be able to provide such multi-scale facilities. The backbone of the
agent-based model we present here is represented by a formal model, called an
X-machine. This state-based model has been initially considered as a generic com-
putational model [20] and later turned into an abstract representation framework of
intracellular biochemical interactions [21]. The model was subsequently refined into
the so-called stream X-machine model [22]. The X-machine model has the ability
to capture various levels of details, as we will see below.

The concept of stream X-machine used in this work is from [23].

Definition 1. A Stream X-Machine (SXM for short) is an 8-tuple

X = (Σ , Γ , Q, M, Φ , F, q0, m0)

where:

• Σ and Γ are the input and output alphabets, respectively.

Large-scale Simulations with FLAME 3

• Q is the finite set of states.
• M is the (possibly) infinite set called memory.
• Φ is a set of partial functions ϕ; each such function maps an input and a memory

value to an output and a possibly different memory value, ϕ : Σ ×M→ Γ ×M.
• F is the next state partial function, F : Q×Φ → Q, which given a state and a

function from the type Φ determines the next state. F is often described as a
state transition diagram.

• q0 and m0 are the initial state and initial memory, respectively.

The model consists of two key components: (i) an underlying state machine struc-
ture, with states, Q, and transitions, F , controlling the behaviour of the model, and
(ii) a set of partial functions Φ describing various actions of the model, triggered by
inputs, from the set Σ , and acting on memory values, from the set M, and generating
in turn outputs, Γ , and updating the memory.

In order to model more complex systems, the stream X-machine model has been
extended to communicating stream X-machine systems, a formalism consisting of
a set of stream X-machines linked through various communication mechanisms.
Some variants have been studied [24, 25, 26], exhibiting different communication
and synchronisation strategies. The model proposed in [25] consisting of a com-
munication matrix that is utilised for exchanging messages between the SXM com-
ponents has been used for modelling agents’ behaviour in the approach presented
below. The formal definition of a communicating stream X-machine system is pro-
vided below [25].

Definition 2. A Communicating Stream X-Machine System (CSXMS for short) with
n components is a tuple Sn = ((Zi)1≤i≤n,E), where:

• Zi = (Σi,Γi,Qi,Mi,Φi,Fi, Ii,Ti,mi,0) is the SXM with number i,1≤ i≤ n.
• E = (ei j)1≤i, j≤n is a matrix of order n×n with ei j ∈ {0,1} for 1≤ i, j ≤ n, i 6= j

and eii = 0 for 1≤ i≤ n.

A CSXMS works as follows:

• Each individual CSXMS is a SXM plus an implicit input queue (i.e., of FIFO
(first-in and first-out) structure) of infinite length; the CSXMS only consumes
the inputs from the queue.

• An input symbol σ received from the external environment (of FIFO structure)
will go to the input queue of a CSXMS, say Z j, provided that it is contained in
the input alphabet of Z j. If more than one such Z j exist, then σ will enter the
input queue of one of these in a non-deterministic fashion.

• Each pair of CSXMS, say Zi and Z j, have two FIFO channels for communication;
each channel is designed for one direction of communication. The communica-
tion channel from Zi to Z j is enabled if ei j = 1 and disabled otherwise.

• An output symbol γ produced by a CSXMS, say Zi, will pass to the input queue
of another CSXMS, say Z j, providing that the communication channel from Zi
to Z j is enabled, i.e. ei j = 1, and it is included in the input alphabet of Z j, i.e.
γ ∈ Σ j. If these conditions are met by more than one such Z j, then γ will enter the

4 Simon Coakley and Paul Richmond

input queue of one of these in a non-deterministic fashion. If no such Z j exists,
then γ will go to the output environment (of FIFO structure).

• A CSXMS will receive from the external environment a sequence of inputs s∈Σ ∗

and will send to the output environment a sequence of outputs g ∈ Γ ∗, where
Σ = Σ1∪ . . .∪Σn, Γ = (Γ1 \ In1)∪ . . .∪ (Γn \ Inn), with Ini = ∪k∈KiΣk, and Ki =
{k | 1≤ k ≤ n,eik = 1}, for 1≤ i≤ n.

The CSXMS formalism and the SXM model provide, through abstractions like
X-machine networks and functions, adequate mechanisms for expressing multi-
scale modelling.

Before being used in connection with various agent-based approaches the X-
machine model and CSXMS have been used as models of intracellular biochemical
interactions [21], bee collective foraging [27], monomorium pharaonis ant colonies
behaviour [28], rice blast fungus [29].

The X-machine model is at the heart of the FLAME agent-based environment
[5] – a thorough presentation can be found in [30]. More recently, the NetLogo
environment [4] has been extended with a library of state machine and X-machine
primitive functions [31, 32, 33].

3 FLAME and FLAMEGPU Architectures

In this section we present the key features of the agent-based environments, FLAME
and FLAMEGPU, developed so far. We describe the usage of the X-machine model
as a fundamental part of them, the main differences between these two software
environments and the latest developments. These two software environments make
use of the concept of CSXMS [25] – see Definition 2.

3.1 Overview of the Design of FLAME

FLAME allows to define agents using the concept of CSXMS, but it also provides
mechanisms to incorporate models described in CellML, SBML, or as sets of differ-
ential equations. Our aim was to devise a generic modelling technique which enables
modellers to define applications as populations of agents interacting and dynami-
cally changing their status or by easily importing and plugging into an agent-based
representation models expressed in other specification languages. To enable wide
applicability, we have adopted a modular and flexible approach to link our agent-
based modelling environment FLAME with existing tools such as COPASI [34] and
JSim [35].

In FLAME, modellers define agents utilising an acyclic state machine that char-
acterises the behaviour of the agent per iteration. Each state transition function has
access to the internal memory of the agent, as well as input and output streams
of information, as these are presented in Definition 1. In FLAME the input/output

Large-scale Simulations with FLAME 5

FIFO channels and the communication matrix E - see Definition 2 - take the form of
message boards [36]. Since message boards are the only means in which the agent
communicates with the environment and other agents, this makes the agent model
inherently parallel. Each agent can be executed independently as long as the input
message board contains the expected messages.

The simulation can therefore be parallelised by distributing agents across dis-
parate processing nodes and synchronising the message boards to ensure that all
agents see the same set of messages. For efficiency, agents are not allowed to read
and write to the same board from the same transition function. This avoids the need
to synchronise the boards on every single write operation.

The synchronisation of a board is initiated the moment all writes have completed
using a message board Sync Start function. This function is non-blocking and the
synchronisation process is performed in a background thread. The framework is
then free to execute other functions that do not depend on the board in question.
It is possible for multiple message boards to be synchronised concurrently. Before
executing agent functions that reads messages from a board, the message board
Sync Complete function has to be called. This function checks the status of the
synchronisation process and returns immediately if the synchronisation is complete.
However, if synchronisation is still in progress the function blocks until completion.

Using this distributed method of synchronisation, agents are able to operate asyn-
chronously to perform computation until a dependence on one of the message boards
is required. Only the message boards require synchronisation which is performed
through a decentralised mechanism. Using this approach, centralised control of the
model is only required during the models initial set-up phase (i.e. the mapping of
agents ad the initial configuration of the message boards) and not during the simu-
lation of the model.

The agent definitions are written in a dialect of XML called XMML and are
parsed together with the entire model by the xparser generating the simulation code.

Based on the model definition, the xparser produces a directed acyclic graph
representing a dependency graph of transition functions. Each agent model will have
its own function dependency graph and they are coupled together by dependencies
on message boards. Nodes representing a message board are dependents of functions
that write to the board, and dependencies of functions that read from the board.

Using the function dependency graph, the xparser can schedule the execution
of agent transition functions such that message producers are scheduled as early as
possible and message consumers as late as possible. This maximises the amount of
computation being performed while the synchronisation process is in flight.

It is possible for transition functions of different agent types to be interleaved as
long as the dependencies are met.

Agent instances are represented as a struct containing the internal memory of
the agent. Agent transition functions read this memory struct and updates its values,
effectively transitioning the agent instance to the next state ready to be consumed
by the next function. The execution of a transition function is repeated for all agent
instances of the associated type in the relevant state. Once all functions have been

6 Simon Coakley and Paul Richmond

called (in the correct order so as to meet dependencies) an iteration of the simulation
is complete.

3.2 Overview of the Design of FLAMEGPU

FLAMEGPU is an agent-based modelling framework that exploits the parallel ar-
chitecture of the (GPU) offering integrated real time visualisation and model inter-
action. It builds on the work of FLAME and uses a variant of the XML based model
description with a custom XSLT based code generation [37] process, rather than
using the FLAME xparser.

From a simulation perspective, FLAMEGPU utilises the Single Program Mul-
tiple Data (SPMD) architecture of GPUs to map agent functions as GPU kernels
operating synchronously over agent and message memory stored as arrays of lin-
early offset data. Whereas FLAME stores agent memory as Array of Structures
(AoS), FLAMEGPU uses Structure of Arrays (SoA) to ensure all memory access is
coalesced. During simulation, centralised control of agents is maintained by a host
CPU thread which is responsible for scheduling the execution of the GPU kernels.
This centralised control has limited impact on performance as data is maintained
on the GPU device (avoiding costly data transfers) and CPU control is restricted to
determining the order of kernels to be executed.

FLAMEGPU provides a massive performance increase over FLAME [38] but
is best suited to large populations of relatively simple (in terms of agent memory
requirements) agents. This provides a good balance between the large number of
threads required to hide memory access latencies with the limited register availabil-
ity of the underlying architecture. As FLAMEGPU has no support for multiple GPU
devices, models are also restricted to the memory space available on a single GPU
device.

3.3 FLAME-II

Some of the FLAMEGPU design solutions and the limitations identified for the
FLAME implementation, mentioned below, have led to the design of a new version
of the FLAME software platform, called FLAME-II .

3.3.1 Limitations of the FLAME Design

To define an agent, modellers specify a set of state transition functions to transition
an agent from one state to another. These functions have read-write access to all
variables within agent memory which seems sensible at first, but in hindsight is the
cause of (or a contributing factor to) some of the limitations of the design.

Large-scale Simulations with FLAME 7

Data Granularity. Because each function can potentially write to all memory
variables, the smallest unit of data is the whole agent instance. Data partitioning for
parallel execution has to therefore be done at the agent level. So, we have to wait
until agents have finished an iteration to write their memory to disk. This can be
a sizeable proportion of the simulation process time depending on the model and
population size.

Execution Path Bound by Model Definition. The memory access requirements
of each transition function are not known to the framework. The parser therefore
cannot make any assumptions about the actual dependencies between the functions
and has to rely solely on the state diagram defined by the modellers. More often
than not, this leads to false dependencies between functions and an execution graph
that is mostly sequential with very few concurrent paths.

Thread Safety.
Due to the lack of thread safety, the framework is unable to safely execute mul-

tiple transition functions concurrently and is therefore less able to efficiently utilise
multi-core systems.

3.3.2 FLAME-II Design

The following sections discuss some of the approaches that we have used in
FLAME-II to explore and maximise the parallelism potential within agent-based
models.

Discovering More Parallelism Through Data Dependency Analysis. To im-
prove the parallel performance of the framework, we need to extract as much con-
currency as possible from a simulation. This involves breaking the simulation down
into more parallelisable units and then scheduling their execution in a manner which
fully utilises all resources available to the execution environment.

Decomposing Agents into Independent Vector Operations. With the changes
introduced in the previous section, transition functions can be treated as operations
on a predefined set of independent variables. Since all the agents of the same type
have the same set of transition functions and memory structure, we can effectively
treat the transition function as an operation on long vectors where each vector ele-
ment corresponds to an agent instance.

Dynamic Task Scheduling. The dependency graph generated based on the anal-
ysis of memory reads/writes would implicitly encode the data dependencies. There-
fore, as long as the function dependencies are met each function is guaranteed to be
accessing the correct versions of memory and messages. This greatly simplifies the
job of managing function dependencies and ensuring the correctness of the simula-
tion.

Using Multiple Queues to Manage Different Resources. Assigning a task type
allows us the opportunity to support multiple task queues. Each queue can be as-
signed to different resources that can be managed independently.

8 Simon Coakley and Paul Richmond

4 Benchmark Comparisons

The performance of the current state of the FLAME agent-based software, con-
sisting of FLAME-II running on different hardware and software environments, in-
cluding HPC platform, and FLAMEGPU running on the parallel architecture of the
GPU, will be illustrate through a benchmark problem. This, referred to as the Circles
model, consists of only a single agent and message type with three agent functions,
which output and input a message containing location information with a final func-
tion that moves the agent according to inter-agent repulsive forces [37, 39].

To give a comparison between an early build of FLAME-II and the previous
version of FLAME, the Circles model using 50000 agents was used to predict per-
formance. The machine used for benchmarking contains 16 physical cores (Intel R©
Xeon R© CPU E5-2687W 3.10GHz) with 64GB RAM running Ubuntu and using
gcc/g++ for compilation. FLAME used round robin partitioning while FLAME-II
used vector splitting. The number of procs from now on refers to the number of
cores (or the number of MPI tasks/processes, which is equivalent).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 4 6 8 10 12 14 16

T
im

e
pe

r
Ite

ra
tio

n,
 s

ec
on

ds

Number of Procs

FLAME-I
FLAME-II

Fig. 1 Comparison of time per iteration between FLAME and FLAME-II

Figure 1 shows the shortest iteration time over multiple runs utilising different
number of procs. FLAME-II shows significant speed improvements when compared
to FLAME-I.

Figure 2 shows the speedup ratio of parallel runs over the equivalent sequential
run. At this early stage it can be shown that the FLAME speedup ratio starts to tail
off with a higher number of processors earlier than the FLAME-II speedup ratio.

Large-scale Simulations with FLAME 9

It can be shown that for this test model FLAME-II scales better with increasing
numbers of procs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Procs

FLAME-I
FLAME-II

Fig. 2 Comparison of speedup between FLAME and FLAME-II

We will illustrate FLAMEGPU performances by using the same benchmark
problem running now on an NVIDIA Tesla K40 GPU platform. The results are pre-
sented in Table 1. In these experiments the population size is increased from 1024
agents to 1048567, by doubling in each case the previous population size (column
labelled Pop Size) and using an environment area (Env Area) such that the
population density is constant (16). The results in the last two columns are obtained
using two different communication algorithms, a Brute Force (BF Comm column)
and Spatial Partitioning (SP Comm column). The performance measurements, in
ms, are made by averaging the performance over 10 iterations.

The Brute Force communication algorithm considers that each agent reads the
message of every other agent in the system. This is comparable to what happens
per distributed node in FLAME. The Spatial Partitioning communication algorithm
deals with a spatial data structure used to limit the number of messages read by each
agent based upon the communication radius. It is much more like the distribution of
agents across processors in FLAME.

In [38, 40] it has been shown the massive increase in performance when a GPU
implementation is used, the results in Table 1 shows that the latest generation of
GPU hardware demonstrates considerably higher performances.

10 Simon Coakley and Paul Richmond

Table 1 FLAMEGPU results.

Pop Size Env Area BF Comm SP Comm

1024 64 1.992 1.183
2048 128 3.678 1.453
4096 256 6.886 1.455
8192 512 13.772 1.813
16384 1024 52.787 2.472
32768 2048 160.905 3.198
65536 4096 526.300 5.209

131072 8192 1847.192 16.731
262144 16384 7269.673 62.41
524288 32768 29523.372 159.087
1048576 65536 359.345

5 FLAME Applications

In this section we look at a number of specific cases of the use of the FLAME ap-
proach, briefly presenting some examples of systems from biology and economics,
pedestrian behaviour and work psychology applications. We focus mostly on simu-
lation aspects involving the use of the FLAME and FLAMEGPU environments, but
present also some formal verification aspects as well.

5.1 Applications in Biology

We present three models, following [19], at different levels of organisation: starting
at molecular level, then continuing with tissue and finishing with an example of
organisms in a colony of social insects.

5.1.1 Model of the Innate Immune System - the NF-kB Pathway

In this model [41] each relevant molecule is modelled as an agent which can move
around the cell and interacts with other molecules under suitable conditions. These
molecular agents diffuse through the cell, binding and dissociating from other
molecules, receptors and cell structures – all of them represented as agents – in
accordance with the circumstances pertaining at that precise moment. Each agent
communicates by sending or receiving signals. Two molecules interact according to
certain rules and depending on their state and proximity, derived from standard rate
constants. The model then implements the various chemical reactions that take place
between these agents. The simulations try to faithfully represent what is known
about the type of various molecules, their position inside the cell and the complex
series of reactions.

Large-scale Simulations with FLAME 11

Using single cell data, the model demonstrated remarkable agreement with the
experimental data and provided the opportunity to investigate various alternative be-
haviours. Experimental data indicated that there is a mismatch between the amount
of IkB in the cell and the amount needed for the NF-kB pathway. Using the model,
we tested a hypothesis, the surplus was sequestered in the actin filaments under
normal conditions, and this was then experimentally validated [42].

5.1.2 Oxygen Metabolism in Aerobic-Anaerobic Respiration in Escherichia
coli

The Bacterium Escherichia coli (E. coli) is one of biologys key model organisms,
probably the best characterized bacterium. E. coli is biochemically versatile and un-
like many organisms can thrive in environments either with abundant oxygen or no
oxygen (O2) [43]. The ability to sense and respond to changes in O2 availability is
necessary for E. coli to successfully compete in a range of niches, including during
infection and when used as a cell factory in biotechnology. In order to run exper-
iments for understanding these problems is technically demanding and time con-
suming, thus accurate models are important. In this model each individual molecule
is represented by an autonomous agent. Molecules can move through 3D space in
the cell and interact with each other when close enough and in a suitable state.
Molecules move differently in different regions of the cytoplasm and this was mod-
elled by controlling the movement of agents in the different areas and changing their
location by Brownian motion (random movement of particles suspended in a fluid)
where appropriate. Multiple binding of agents are added to chemical reactions, each
molecule agent can seek interaction with several relevant types of molecules, with
the appropriately sized interaction radius for each type.

The modelling approach in this case consists of a combination of three distinct
models: kinetic, reduced-order kinetic, and agent/hybrid modelling. Each of the
modelling approaches contributes by addressing questions that are difficult to in-
corporate within a single modelling framework. The resulting models can provide
predictions, be used as a scaffold for our emerging understanding of the data and
identify gaps in our biological knowledge. Each component has used different mod-
elling techniques that depend on the availability of biological data. The model has
been extensively validated under controlled experimental conditions [44].

5.1.3 Epithelial Tissue and Wound Repair

This modelling approach is at the tissue level where we are investigating how groups
of cells interact and form structures and evolve key functions in organisms. We
consider interactions between cells in both the bladder and in skin [45, 11, 46, 47,
12].

Some of the key issues related to the growth and repair of tissues are related to the
division and migration of cells within a population. Each cell has a fundamental cell

12 Simon Coakley and Paul Richmond

cycle that underpins cell growth and division, or provides alternative routes for spe-
cialisation (differentiation) and death (apoptosis). Progression around the cell cycle
is affected by interactions with other cells, either through direct cell:cell contact or
indirectly through the release and detection of soluble signalling factors, which may
have a profound effect on behaviour. These are the problems that modelling has to
tackle. The agents in this model represent cells that move in space, but also divide,
grow and eventually die.

In virtuo investigations indicated that both cell proliferation and migration are
crucial for re-epithelialisation, suggesting delicate mechanisms to coordinate the
behaviour of different keratinocyte populations. Further model analysis found cer-
tain factors playing a positive role in epidermal wound healing by coordinating the
behaviour of these keratinocyte populations,.

The problem has been also mapped into FLAMEGPU and various experiments
performed [18]. The performance of the GPU version against the CPU shows a great
potential in using FLAMEGPU for such problems. The simulation that took several
hours using a single CPU core, was processed on the GPU in less than 2 minutes.
FLAMEGPU allows the real-time visualisation to be coupled with the simulation,
which is a real benefit for real-time interaction during the simulation.

5.1.4 Foraging Strategies in Ant Colonies

We are moving now to modelling the behaviour of ant colonies. A fundamental re-
quirement for insect societies living in a central place is the discovery and efficient
exploitation of food sources. We investigated the foraging activities of the Pharaohs
ant, Monomorium pharaonis, a small tropical ant species. They organise their for-
aging activities using chemical communication to produce pheromone trails. Ant
pheromone trails provide an effective and efficient solution to the problem of locat-
ing and exploiting available food resources.

In this context various ants are modelled as agents participating to foraging activ-
ities. A notable discovery facilitated by agent-based modelling is that Pharaohs ants
produce trail networks with a treelike structure [48]. The branches of this network
have a mean bifurcation angle of 54 degrees, and this branching structure conveys
important information to the ants. Simulations of foraging ant colonies prompted a
new hypothesis of ant orientation in trail networks which was confirmed by exten-
sive experimental observations [49].

There are a number of key principles that need to be observed if realistic mod-
els of biological systems are to be achieved. Biological systems exist in a physical
three-dimensional world governed by the laws of physics. There is a strong tempta-
tion by computer scientists to abstract away some of these factors in order to make
modelling and analysis more tractable. This may impede useful insights into biol-
ogy since ignoring geometry and the real forces that dictate system behaviour can
be very misleading. The advantage of agent-based modelling over traditional math-
ematical modelling, such as differential equations, is that many of the key deter-
minants underpinning the emergence of complex system behaviour are found in be-

Large-scale Simulations with FLAME 13

haviour of individual molecules, cells of organisms. Agent-based modelling enables
us to understand the emergent development of structure and function and provides
a deep understanding of biology [19].

5.2 Applications in Economy

There are various ways of modelling modern economies and mechanisms for carry-
ing out policy analysis. Mathematical models have been successfully used for many
years and they still represent a powerful tool in this respect. However, these tools
make sometime gross simplifications and this requires new alternative approaches
[50]. New ways of looking at economics more grounded in reality are now devel-
oped using agent-based computational models.The idea is not new, but previous at-
tempts in this respect have been limited by the inability to handle large populations
of agents. Nowadays, with the increasing computational power and availability of
high performance computers some of these limitations have been overcome. In the
sequels we present, following largely [50], how FLAME, due to its ability to run
simulations on powerful high performance machines, has been used to provide the
first detailed description of the entire European economy created using the agent-
based modelling technique (this research has been funded through the European
EURACE project – www.eurace.org).

The different markets are modelled in great detail. For example, agents in the
labour market are considered with firms seeking credit, firms buying capital goods,
deciding production levels, advertising and appointing staff, selling consumption
goods etc. The full list of agent types is ([50]):

• Firms (consumption goods producers)
• Households (workers and consumers)
• Investment goods producers
• Malls (retail outlets selling consumption goods)
• Banks (providing credit and taking savings and investments)
• Clearing house (managing the market and buying and selling of equity shares,

bonds etc.)
• Government (setting fiscal, labour and other policy and collecting taxes, offering

subsidies etc.)
• Central Bank (managing money supply, interest rates etc.)
• Eurostat (collects and reports economic statistics etc.)

A number of policy experiments have been carried out to demonstrate the capabili-
ties of the complete model - some are illustrated below.

Experiment 1. An analysis of the impact of fiscal tightening compared with
quantitative easing in economic performance [51].

One of the conclusions of this study is that the quantitative easing policy provides
better macroeconomic performance than fiscal tightening. This can be explained by
the fact that private sector agents, being endowed with higher monetary resources,

14 Simon Coakley and Paul Richmond

are more able and willing to consume and invest. The higher monetary endowment
is not offset by higher prices. Quantitative easing however does not stimulate more
lending from the banking sector, as it has been claimed recently. Indeed, the opposite
is true. Quantitative easing, being a lender of last resort mechanism to the govern-
ment, provides a better macroeconomic performance by reducing the crowding out
effect on the demand side of the economy that may be caused by the financing of
public debt.

Experiment 2. The effect of open migration within the EU on the economies of
the member countries [15].

The simulations indicate that the free migration of workers from a new accession
country to an established country brings considerable economic benefits to the re-
ceiving country. The down side is that the contributing country suffers an economic
penalty. This should be seen in the light of the recent UK policy to free migration
from the new EU countries in contrast to the policy of some other countries – e.g.
Germany.

Experiment 3. The effects of a policy of household subsidies in dealing with an
exogenous oil price shock [17, 16].

The impact of a sudden rise in a key commodity such as oil can be highly dam-
aging to an economy. This can be shown using the model. By have incorporating
energy prices into the capital goods prices and using an energy price mark-up one
can show how a prolonged energy crisis may affect GDP growth negatively.

The EURACE model built using the FLAME environment has demonstrated that
agent-based modelling of large-scale economic systems is both possible, tractable
and produces results that provide a good basis for more insights into the behaviour
of more complex economic problems.

5.3 Other Applications

In this section we present other applications of the FLAME and FLAMEGPU en-
vironments in different areas. We start by presenting an application with impact
in social crowd behaviour. This application has also a significant impact on some
graphics oriented problems and simulations.

The problem of pedestrian simulations have found increasing use in various sce-
narios and circumstances dealing with highly populated areas, like airports, sport
arenas, pilgrimages to religious places. These simulations require flexibility in deal-
ing with various hypotheses, real-time solutions to some problems, easy and effec-
tive ways to represent and manipulate agents.

A large scale pedestrian simulation method, implemented with an agent-based
modelling approach and running on a FLAMEGPU environment, is presented in
[40]. The techniques used for pedestrian simulation make use of parallel processing
through graphics cards hardware allowing simulation scales that go far beyond those
of serial frameworks. The method allows rapid prototyping and robust validation and
testing through the use of a generic abstract framework. The method implemented

Large-scale Simulations with FLAME 15

benefited from the use of an optimised path followed by pedestrian, showing that
the optimised flow generates a more realistic flow.

In [52, 53] it is presented a psychology-based study on teams behaviour in soft-
ware engineering projects in certain real-life situations, where different software
development methods, like waterfall and agile methods, are used. By using an im-
plementation of the concept of transactive memory in simulation scenarios, it is
shown how the knowledge about the skills and abilities of team mates can con-
tribute to a successful approach on task allocation and problem solving with respect
to software development projects.

In [54] it is initiated another interesting application for FLAME, the automatic
translation of certain formal models - in this case kernel P systems - into the
FLAME environment. This is an important problem, at least for two reasons: (i)
it allows the automatic translation of kernel P systems applications to FLAME and
(ii) it provides a simulation environment for these applications that can be compared
with those dedicated to kernel P systems models. In [54] it is shown how FLAME
can be used as a simulation platform that brings new insights into the understanding
of complex situations, in this case the subset sum NP complete problem.

5.4 Formal Verification

In the previous sections the emphasis has been on large scale simulation, flexibility
in representing agents, robust design and validation through experiments. In some
situations it is necessary to verify various hypothesis and running even multiple ex-
periments is not always enough. Certain formal methods and tools widely used in
software engineering and program and software analysis, can be used in order to
check various properties. This approach requires some sort of specific formal de-
scription of the system and comes with certain constraints regarding the size of the
system. The method that we describe briefly below is called model-checking and
it allows to check certain properties of a system expressed in a certain formal lan-
guage. We illustrate this approach for the problem of oxygen metabolism in aerobic
and anaerobic respiration in Escherichia coli [43].

In [55] it is described the process of transforming the above mentioned prob-
lem from its FLAME specification into specific model checker tools. Two model
checkers have been chosen, ProB and Spin with their associated formal languages,
EventB and Promela, respectively. The translation from FLAME X-machine for-
malism directly to these formal languages is not performed directly as it leads to the
usual problem of state explosion that all the model checkers face when the system
is relatively complex. In this respect, a better abstraction of the system has been
chosen, by using an intermediate kernel P systems model, a rule-based formalism
[54], which allows a more systematic approach on representing the rules involved
as either rewriting or communicating transformations. Once these translations have
been mapped into EventB and Promela, properties expressed also in a formal lan-
guage, a specific type of temporal logic called Linear Time Logic (LTL), have been

16 Simon Coakley and Paul Richmond

formulated and verified - some examples are provided below. The aim of verifying
these properties is to check certain type of behaviour that occurs irrespective of how
many simulations are performed.

For example, the interaction mechanism between a Fnr monomer and oxygen
molecule is defined as follows in the model considered [55]:

• When an oxygen molecule is within a pre-defined reaction distance to an Fnr
dimer, the Fnr dimer is decomposed into two Fnr monomers. If this dimer is
bound to a binding site, the binding site will become unoccupied.

• When two Fnr monomers are within reaction distance, they can be combined
into an Fnr dimer.

• When the distance between an Fnr dimer and an unoccupied binding site is less
than their reaction distance, the dimer will bind to the binding site.

Under certain initial conditions, when the number of oxygen molecules is less
than 100 and there are no more than 75 dimers and 18 binding sites, one can show
that the number of Fnr dimers is low. This can be shown by using an LTL query,
G(noMon< 7), which shows that in any execution pathway (simulation) the number
of such monomers is no more than 7. Other more subtle properties can be verified.
For instance, given an initial concentration of 500 molecules of oxygen, after 500
steps, the number of FnR monomers will be at most half the number of FnR dimers;
whereas when we start with 100 oxygen molecules, after the point when the oxygen
disappears from the cell, no Fnr monomers will be produced.

The experiments with two model checkers have shown their abilities in dealing
with various aspects of the verification process, as well as their limitations. EventB
having a formalism based on the set theory, uses functions, sets and set operators as
building blocks for specifying the molecule evolution rules. The non-deterministic
conditional and cycling instructions available in Promela recommends it as a suit-
able specification language for modelling the non-deterministic behaviour of the
different molecules. Overall, one can conclude that EventB proved to be more con-
venient for modelling, while Spin was more efficient for simulation and verification,
according to the experiments conducted in [55].

5.5 Potential use within Data Intensive Computing Domains

With respect to the relationship between the compute intensive FLAME and FLAME
GPU architectures and more data intensive computing, previous literature [56] has
highlighted how agent based modelling can have a two tier impact into knowledge
extraction from data. On the one hand data mining techniques can be applied to
large scale ABM (such as those produced by FLAME and FLAME GPU) to help
analyse simulation data as well as to help in the validation and verification of mod-
els through knowledge driven analysis of results. Conversely, ABM can be applied
to data mining as a method of generating quasi-real data, where areas of data are
missing or incomplete. In this approach the FLAME modelling approach could be

Large-scale Simulations with FLAME 17

used predictively (in much the same way as it has been applied in the case studies
presented) to produce data to be combined with exiting or partial data sets such as
those prevalent within social or biological sciences. Given that the biological and
social sciences are transitioning towards data rich science. The application of large
scale agent based modelling frameworks can play a vital role when used in combi-
nation with data intensive methods such as data mining. Finally, the potential to use
the inherent scheduling and distribution algorithms of FLAME to parallelise large
scale data analytics can be achieved through the use of intelligent agents. In this
case agents can perform data analysis directly using communication where needed
to negotiate.

6 Conclusions

In this chapter, we have described the current design of FLAME and FLAMEGPU.
We then described an architecture, FLAME-II, that decomposes the simulation into
a list of vector operations that can be scheduled based on a dependency graph. The
dependency graph can be generated by analysing the memory accesses of each agent
function.

The new approach will enable various optimisation opportunities including more
efficient data structures, better resource utilisation using dynamical task scheduling,
and multiple levels of parallelism. Each of these was briefly discussed.

The benchmark results provided, while not comprehensive, give a good indica-
tion that the performance of an early build of FLAME-II is already significantly
beating the performance of the previous version of FLAME. FLAMEGPU is also
shown to outperform FLAME on some specific applications, whereas specific op-
timisation algorithms regarding the communication mechanisms can improve even
more its performances.

A set of applications from various fields prove the flexibility, efficiency and use-
fulness of these software environments. Finally, the issue of formally verifying these
systems is discussed for the case of a rule-based system which can be formally anal-
ysed using model checking techniques.

Future work includes the development of the FLAME-II platform to the level of
fully integrating FLAMEGPU such as to obtain a unique simulation environment
that covers a broad range of hardware platforms and provides support for approach-
ing complex problems and running large-scale simulations.

Acknowledgement

This work has been funded by EPSRC Grants EP/I030654/1 and EP/I030301/1 and
the University of Sheffield Vice Chancellors Fellowship Scheme.

18 Simon Coakley and Paul Richmond

References

1. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multi-agent sim-
ulation environment. Simulation: Transactions of the society for Modeling and Simulation
International 82(7) (2005) 517–527

2. North, M., Collier, N., Vos, J.: Experiences creating three implementations of the Repast agent
modeling toolkit. ACM Transactions on Modeling and Computer Simulation 16(1) (January
2006) 1–25

3. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The Swarm simulation system: a toolkit
for building multi-agent simulations. Working Paper 96-06-042, Santa Fe Institute (1996)

4. Center for Connected Learning and Computer-Based Modeling, Northwestern University.
Evanston, IL: NetLogo (1999)

5. FLAME Website: http://www.flame.ac.uk (2013)
6. Heath, B., Hill, R., Ciarallo, F.: A survey of agent-based modelling practices. Journal of

Artificial Societies and Social Simulation 12 (2009) 9
7. Allan, R.: Survey of agent-based modelling and simulation tools. Technical Report DL-TR-

2010-007, Science and Technology Facilities Council (2010)
8. Weidlich, A., Veit, D.: A critical survey of agent-based wholesale electricity. Energy Eco-

nomics 30 (2008) 1728–1759
9. Leitäo, P.: Agent-based distributed manufacturing control: A state-of-the-art survey. Engi-

neering Applications of Artificial Intelligence 22 (2009) 979–991
10. Friesen, M.R., McLeod, R.D.: A survey of agent-based modelling of hospital environments.

IEEE Access 2 (2014) 227–233
11. Sun, T., McMinn, P., Coakley, S., Holcombe, M., Smallwood, R., MacNeil, S.: An integrated

systems biology approach to understanding the rules of keratinocyte colony formation. J. R.
Soc. Interface 4 (2007) 1077–1092

12. Adra, S., Sun, T., MacNeil, S., Holcombe, M., Smallwood, R.: Development of a three di-
mensional multiscale computational model of the human epidermis. PLoS ONE 5 (2010)

13. Li, X., Upadhyay, A.K., Bullock, A.J., Dicolandrea, T., Xu, J., Binder, R.L., Robinson, M.K.,
Finlay, D.R., Mills, K.J., Bascom, C.C., Kelling, C.K., Isfort, R.J., Haycock, J.W., MacNeil,
S., Smallwood, R.H.: Skin stem cell hypotheses and long term clone survival – explored using
agent-based modelling. Scientific Reports 3 (2013)

14. Burkitt, M., Walker, D., Romano, D., Fazeli, A.: Modelling sperm behaviour in a 3D environ-
ment. (2011) 141–149

15. Dawid, H., Gemkow, S., Harting, P., Neugart, M.: On the effects of skill upgrading in the
presence of spatial labor market frictions: An agent-based analysis of spatial policy design.
Journal of Artificial Societies and Social Simulation 12 (2009) 334–347

16. van der Hoog, S., Deissenberg, C.: Energy shocks and macroeconomic stabilization policies
in an agent-based macro model. In Dawid, H., Semmler, W., eds.: Computational Methods in
Economic Dynamics. Volume 13 of Dynamic Modeling and Econometrics in Economics and
Finance. Springer Berlin Heidelberg (2010) 159–181

17. Deissenberg, C., van der Hoog, S., Dawid, H.: EURACE: a massively parallel agent-based
model of the European economy. Applied Mathematics and Computation 204(2) (October
2008) 541–552

18. Richmond, P., Walker, D., Coakley, S., Romano, D.: High performance cellular level agent-
based simulation with FLAME for the GPU. Briefing in Bioinformatics 11 (2010) 334–347

19. Holcombe, M., Adra, S., Bicak, M., Chin, S., Coakley, S., Graham, A., Green, J., Greenough,
C., Jackson, D., Kiran, M., MacNeil, S., Maleki-Dizaji, A., McMinn, P., Pogson, M., Poole,
R., Qwarnstrom, E., Ratnieks, F., Rolfe, M., Smallwood, R., Sun, T., Worth, D.: Modelling
complex biological systems using an agent-based approach. Integrative Biology 4 (2012)
53–64

20. Eilenberg, S.: Automata, languages and machines. Vol. A. Academic Press, London (1974)
21. Holcombe, M.: Towards a formal description of intracellular biochemical organisation. Tech-

nical Report CS-86-1, Dept of Computer Science, University of Sheffield, Sheffield, UK
(1986)

Large-scale Simulations with FLAME 19

22. Laycock, G.: The Theory and Practice of Specification Based Software Testing. PhD thesis,
Dept of Computer Science, University of Sheffield, Sheffield, UK (1993)

23. Holcombe, M., Ipate, F.: Correct Systems – Building a Business Process Solution. Springer
(1998)

24. Barnard, J., Whitworth, J., Woodward, M.: Communicating X-machines. Information and
Software Technology 38(6) (June 1996) 401–407

25. Balanescu, T., Cowling, A., Georgescu, H., Gheorghe, M., Holcombe, M., Vertan, C.: Com-
municating stream X-machines are no more than X-machines. Journal of Universal Computer
Science 5(9) (1999) 494–507

26. Kefalas, P. Eleftherakis, G., Kehris, E.: Communicating X-machines: a practical approach for
formal and modular specification of large systems. Information & Software Technology 45(5)
(2003) 15–30

27. Gheorghe, M., Holcombe, M., Kefalas, P.: Computational models of collective foraging.
BioSystems 61 (2001) 133–141

28. Jackson, D., Gheorghe, M., Holcombe, M., Bernardini, F.: An agent-based behavioural model
of monomorium pharaonis colonies. In: Proceedings of the 4th International Workshop on
Membrane Computing. Volume 2933 of Lecture Notes in Computer Science. (2004) 232–239

29. Holcombe, M., Holcombe, L., Gheorghe, M., Talbot, N.: A hybrid machine model of rice
blast fungus, manaporthe grisea. BioSystems 68 (2003) 223–228

30. Coakley, S.: Formal Software Architecture for Agent-Based Modelling in Biology. PhD thesis,
Department of Computer Science, University of Sheffield, Sheffield, UK (2007)

31. Sakellariou, I.: Agent based modelling and simulation using state machines. In: 2nd Inter-
national Conference on Simulation and Modeling Methodologies, Technologies and Applica-
tions (SIMULTECH 2012). (2012) 270–279

32. Sakellariou, I.: Turtles as state machines - agent programming in NetLogo using state ma-
chines. In: 4th International Conference on Agents and Artificial Intelligence (ICAART 2012.
(2012) 235–378

33. Sakellariou, I., Kefalas, P., Stamatopoulou, I.: Evacuation simulation through formal emo-
tional agent based modelling. In: Proceedings of the 6th International Conference on Agents
and Artificial Intelligence (ICAART 2014), SciTePress (2014) 193–200

34. Hoops, S., Sahle, S., Gauges, R., Lee, C., Nimus, M., Singhal, M., Xu, L., Mendes, P., Kum-
mer, U.: Copasi – a complex pathway simulator. Bioinformatics 22 (2006) 3067–3074

35. Raymond, G.M., Butterworth, E.A., Bassingthwaighthe, J.B.: JSim: Mathematical modelling
for organ systems, tissues, and cells. FASEB J 21 (2007) 736.5

36. Chin, S.: libmboard Reference Manual. 0.2.1 edn. (2009)
http://ccpforge.cse.rl.ac.uk/gf/download/frsrelease/107/222/libmboard-0.2.1-
UserManual.pdf.

37. Richmond, P., Romano, D.: Template driven agent based modelling and simulation with
CUDA. In Hwu, W.m., ed.: GPU Computing Gems Emerald Edition. Morgan Kaufmann
(2011) 313–324

38. Richmond, P., Coakley, S., Romano, D.: A high performance agent based modelling frame-
work on graphics card hardware with CUDA (extended abstract). (2009) 1125–1126

39. Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.: Exploita-
tion of high performance computing in the FLAME agent-based simulation framework. In:
Proceedings of the 14th International Conference on High Performance Computing and Com-
munications. (2012) 538–545

40. Karmakharm, T., Richmond, P., Romano, D.: Agent-based large scale simulation of pedestri-
ans with adaptive realistic navigation vector fields. (2010) 67–74

41. Coakley, S., Smallwood, R., Holcombe, M.: From molecules to insect communities – how for-
mal agent-based computational modelling is uncovering new biological facts. Mathematicae
Japonicae Online e-2006 (2006) 765–778

42. Pogson, M., Smallwood, R., Qwarnstrom, E., Holcombe, M.: Formal agent-based modelling
of intracellular chemical interactions. BioSystems 85 (2006) 37–45

43. Pogson, M., Holcombe, M., Smallwood, R., Qwarnstrom, E.: Introducing spatial information
into predictive NF-kB modelling - An agent-based approach. PLoS ONE 3 (2008) e2367

20 Simon Coakley and Paul Richmond

44. Maleki-Dizaji, S., Rolfe, M., Fisher, P., Holcombe, M.: A systematic approach to understand-
ing bacterial responses to oxygen using Taverna and Webservices. In: Proc 13th International
Conference on Biomedical Engineering. (2009) 77–80

45. Walker, D., Wood, S., Southgate, J., Holcombe, M., Smallwood, R.: An integrated agent-
mathematical model of the effect of intercellular signalling via the epidermal growth factor
receptor on cell proliferation. Journal of Theoretical Biology 242 (2006) 774–789

46. Sun, T., McMinn, P., Holcombe, M., Smallwood, R., MacNeil, S.: Agent based modelling
helps in understanding the rules by which fibroblasts support keratinocyte colony formation.
PLoS ONE 3 (2008) e2129

47. Sun, T., Adra, S., MacNeil, S., Holcombe, M., Smallwood, R.: Exploring hypotheses of the
actions of TGF-β1 in epidermal wound healing using a 3d computational multiscale model of
the human epidermis. PLoS ONE 4 (2009) e8515

48. Jackson, D.E., Holcombe, M., Ratnieks, F.L.W.: Trail geometry gives polarity to ant foraging
networks. Nature 432 (2004) 907–909

49. Jackson, D.E., Martin, S.J., Ratnieks, F.L.W., Holcombe, M.: Spatial and temporal variation
in pheromone composition of ant foraging trails. Behavioural Ecology 18 (2007) 444–450

50. Holcombe, M., Coakley, S., Kiran, M., Chin, S., Greenough, C., Worth, D., Cincotti, S.,
Raberto, M., Teglio, A., Deissenberg, C., van der Hog, S., Dawid, H., Gemkow, S., Harting,
P., Neugart, M.: Large-scale modelling of economic systems. Complex Systems 22 (2013)
175–191

51. Raberto, M., Teglio, A., Cincotti, S.: Credit money and macroeconomic instability
in the agent-based model and simulator EURACE. Economics, http://www.economics-
ejournal.org/economics/discussionpapers/2010-4 (2010)

52. Corbett, A.: Agent-based Modelling of Transactive Memory Systems and Knowledge Pro-
cesses in Agile versus Traditional Software Development Teams. PhD thesis, Department of
Computer Science, University of Sheffield, Sheffield, UK (2012)

53. Corbett, A., Wood, S., Holcombe, M.: It’s the people stupid! - Formal models for social
interaction in agile software development teams : Advances in Social Sciences Research
Journal

54. Bakir, M.E., Ipate, F., Konur, S., Mierla, L., Niculescu, I.: Extended simulation and verification
platform for kernel P systems. (2014) 135–152

55. Ţurcanu, A., Mierlă, L., Ipate, F., Ştefănescu, A., Bai, H., Holcombe, M., Coakley, S.: Mod-
elling and analysis of E. coli respiratory chain. In Frisco, P., Gheorghe, M., Pérez-Jiménez,
M.J., eds.: Applications of Membrane Computing in Systems and Synthetic Biology. Volume 7
of Emergence, Complexity and Computation. Springer Berlin Heidelberg (2014) 247–267

56. Baqueiro, O., Wang, Y.J., McBurney, P., Coenen, F.: Integrating data mining and agent based
modeling and simulation. In: Advances in Data Mining. Applications and Theoretical Aspects.
Springer (2009) 220–231

