
GPU Computing: GPU 

Architectures
Dr Paul Richmond

http://paulrichmond.shef.ac.uk



Introduction and Context

Accelerators (CPUs vs GPUs)

NVIDIA Hardware Model



GPU Introduction

https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI


Power = Frequency x Voltage²

Performance Improvements traditionally realised by increasing 
frequency
Voltage decreased to maintain steady power

Voltage cannot be decreased any further
1’s and 0’s represented by different voltages

Need to be able to distinguish between the two

CPU Limitations



 Moore’s Law: A doubling of 
transistors every couple of years
 BUT Clock speeds are not increasing

 Longer more complex pipelines?

 Increase performance by adding 
parallelism
 Perform many operations per clock 

cycle
 More cores

 More operations per core

 Keep power per core low

Moores Law



Much of the functionality of CPUs is unused for HPC
Branch prediction, out of order execution, etc.

Ideally for HPC we want: Simple, Low Power and Highly Parallel 
cores

Problem: Still need operating systems, I/O, scheduling

Solution: “Hybrid Systems” – CPUs provide management, 
“Accelerators” (or co-processors) provide compute power.

Accelerators



Introduction and Context

Accelerators (CPUs vs GPUs)

NVIDIA Hardware Model



Chip fabrication prohibitively expensive
HPC market relatively small

Graphics Processing Units (GPUs) have evolved from the desire from 
improved graphical realism in games
Significantly different architecture

Lots of number crunching cores

Highly parallel

Initially GPUs started to be used for general purpose use (GPGPU)

NVIDIA and AMD now tailor their architectures for HPC and DL

Designing an Accelerator



Latency vs. Throughput

Latency: The time required to perform some action 
Measured in units of time

Throughput: The number of actions executed per unit of time
Measured in units of what is produced

E.g. An assembly line manufactures GPUs. It takes 8 hours (a working 
day) to manufacture a GPU but the assembly line can manufacture 
100 GPUs per day.



CPU vs GPU

CPU 

Latency oriented

Optimised for serial code performance

Good for single complex tasks

GPU 

Throughput oriented

Massively parallel architecture

Optimised for performing many similar tasks simultaneously (data parallel)



CPU vs GPU

Large Cache

Hide long latency memory access

Powerful Arithmetic Logical Unit 
(ALU)

Low Operation Latency

Complex Control mechanisms

Branch prediction etc.

Small cache

But faster memory throughput

Energy efficient ALUs

Long latency but high throughput 

Simple control

No branch prediction



Performance Characteristics

Source: NVIDIA Programming Guide (http://docs.nvidia.com/cuda/cuda-c-programming-guide)



Introduction and Context

Accelerators (CPUs vs GPUs)

NVIDIA Hardware Model



NVIDIA GPUs have a 2-
level hierarchy
Each Streaming 

Multiprocessor (SMP) has 
multiple vector cores

The number of SMs varies 
across different hardware 
implementations

The design of SMPs varies 
between GPU families

The number of cores per 
SMP varies between GPU 
families

Hardware Model

GPU

SM SM

SMSM

SM

Device Memory Shared Memory / Cache

Scheduler / Dispatcher

Instruction Cache and Registers



Tesla Range Specifications

“Fermi” 
2070

“Fermi” 
2090

“Kepler”
K20 

“Kepler” 
K20X

“Kepler”
K40

“Maxwell” 
M40

CUDA cores 448 512 2496 2688 2880 3072

Chip Variant GF110 GF110 GK110 GK110 GK110B GM200

Cores per SM 32 32 192 192 192 128

Single Precision 
Performance

1.03 Tflops 1.33 Tflops 3.52 Tflops 3.93 Tflops 4.29 Tflops 7.0 Tflops

Double Precision
Performance

0.51 TFlops 0.66 TFlops 1.17 TFlops 1.31 TFlops 1.43 Tflops 0.21 Tflops

Memory 
Bandwidth

144 GB/s 178 GB/s 208 GB/s 250 GB/s 288 GB/s 288GB/s

Memory 6 GB 6 GB 5 GB 6 GB 12 GB 12GB



NVIDIA Roadmap



GPUs are better suited to parallel tasks than CPUs

Accelerators are typically not used alone, but work in tandem with 
CPUs

GPU hardware is constantly evolving 

GPU accelerated systems scale from simple workstations to large-
scale supercomputers

CUDA is a language for general purpose GPU (NVIDIA only) 
programming

Summary


