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https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI

CPU Limitations

(dPower = Frequency x Voltage?
dPerformance Improvements traditionally realised by increasing
frequency
dVoltage decreased to maintain steady power

(dVoltage cannot be decreased any further
d1’s and 0’s represented by different voltages
(INeed to be able to distinguish between the two




Moores Law

o Moore’s Law: A doubling of
transistors every couple of years : /
— BUT Clock speeds are not increasing (sor'e’s‘tﬁ'lc‘wp;rexngsm) A
— Longer more complex pipelines? | .
o Increase performance by adding
parallelism
o Perform many operations per clock
cycle
o More cores
e More operations per core ’
« Keep power per core low . — .o S
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Accelerators

dMuch of the functionality of CPUs is unused for HPC

(dBranch prediction, out of order execution, etc.

dldeally for HPC we want: Simple, Low Power and Highly Parallel
cores

JProblem: Still need operating systems, 1/0, scheduling

dSolution: “Hybrid Systems” — CPUs provide management,
“Accelerators” (or co-processors) provide compute power.
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Designing an Accelerator

A Chip fabrication prohibitively expensive
AHPC market relatively small

A Graphics Processing Units (GPUs) have evolved from the desire from
improved graphical realism in games

dSignificantly different architecture
dLots of number crunching cores
dHighly parallel

initially GPUs started to be used for general purpose use (GPGPU)
NVIDIA and AMD now tailor their architectures for HPC and DL
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Latency vs. Throughput

dLatency: The time required to perform some action
(dMeasured in units of time

dThroughput: The number of actions executed per unit of time
(dMeasured in units of what is produced

JE.g. An assembly line manufactures GPUs. It takes 8 hours (a working

day) to manufacture a GPU but the assembly line can manufacture
100 GPUs per day.
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CPU vs GPU

JCPU
Latency oriented
JOptimised for serial code performance
JGood for single complex tasks

JdGPU
AThroughput oriented
(A Massively parallel architecture
dOptimised for performing many similar tasks simultaneously (data parallel)
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CPU vs GPU
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CPU GPU
dLarge Cache dSmall cache
Hide long latency memory access But faster memory throughput
dPowerful Arithmetic Logical Unit JEnergy efficient ALUs
(ALU) ULong latency but high throughput

Low Operation Latency QSimple control

(dComplex Control mechanisms QNo branch prediction
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Branch prediction etc.
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Performance

Theoretical GFLOP/s
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Source: NVIDIA Programming Guide (http://docs.nvidia.com/cuda/cuda-c-programming-guide)
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Hardware Model

Device Memory )
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Shared Memory / Cache
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Scheduler / Dispatcher

Instruction Cache and Registers

(INVIDIA GPUs have a 2-
level hierarchy

JEach Streaming
Multiprocessor (SMP) has
multiple vector cores

(JThe number of SMs varies
across different hardware
implementations

dThe design of SMPs varies
between GPU families

(JThe number of cores per
SMP varies between GPU
families
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Tesla Range Specifications

“Maxwell”

M40

CUDA cores

Chip Variant

Cores per SM

Single Precision
Performance

Double Precision
Performance

Memory
Bandwidth

Memory

448

GF110

32

1.03 Tflops

0.51 TFlops

144 GB/s

6 GB

512

GF110

32

1.33 Tflops

0.66 TFlops

178 GB/s

6 GB

2496

GK110

192

3.52 Tflops

1.17 TFlops

208 GB/s

5GB

2688

GK110
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3.93 Tflops

1.31 TFlops

250 GB/s

6 GB

2880

GK1108B

192

4.29 Tflops

1.43 Tflops

288 GB/s

12 GB

3072

GM200

128

7.0 Tflops

0.21 Tflops

288GB/s
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NVIDIA Roadmap

= Pascal
Unified Memory
3D Memory
NVLink
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Dynamic Parallelism
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Summary

(GPUs are better suited to parallel tasks than CPUs

JAccelerators are typically not used alone, but work in tandem with
CPUs

JGPU hardware is constantly evolving

(JGPU accelerated systems scale from simple workstations to large-
scale supercomputers

(JCUDA is a language for general purpose GPU (NVIDIA only)
programming
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