
GPU Computing: GPU 

Architectures
Dr Paul Richmond

http://paulrichmond.shef.ac.uk



Introduction and Context

Accelerators (CPUs vs GPUs)

NVIDIA Hardware Model



GPU Introduction

https://www.youtube.com/watch?v=-P28LKWTzrI
https://www.youtube.com/watch?v=-P28LKWTzrI


Power = Frequency x Voltage²

Performance Improvements traditionally realised by increasing 
frequency
Voltage decreased to maintain steady power

Voltage cannot be decreased any further
1’s and 0’s represented by different voltages

Need to be able to distinguish between the two

CPU Limitations



 Moore’s Law: A doubling of 
transistors every couple of years
 BUT Clock speeds are not increasing

 Longer more complex pipelines?

 Increase performance by adding 
parallelism
 Perform many operations per clock 

cycle
 More cores

 More operations per core

 Keep power per core low

Moores Law



Much of the functionality of CPUs is unused for HPC
Branch prediction, out of order execution, etc.

Ideally for HPC we want: Simple, Low Power and Highly Parallel 
cores

Problem: Still need operating systems, I/O, scheduling

Solution: “Hybrid Systems” – CPUs provide management, 
“Accelerators” (or co-processors) provide compute power.

Accelerators



Introduction and Context

Accelerators (CPUs vs GPUs)

NVIDIA Hardware Model



Chip fabrication prohibitively expensive
HPC market relatively small

Graphics Processing Units (GPUs) have evolved from the desire from 
improved graphical realism in games
Significantly different architecture

Lots of number crunching cores

Highly parallel

Initially GPUs started to be used for general purpose use (GPGPU)

NVIDIA and AMD now tailor their architectures for HPC and DL

Designing an Accelerator



Latency vs. Throughput

Latency: The time required to perform some action 
Measured in units of time

Throughput: The number of actions executed per unit of time
Measured in units of what is produced

E.g. An assembly line manufactures GPUs. It takes 8 hours (a working 
day) to manufacture a GPU but the assembly line can manufacture 
100 GPUs per day.



CPU vs GPU

CPU 

Latency oriented

Optimised for serial code performance

Good for single complex tasks

GPU 

Throughput oriented

Massively parallel architecture

Optimised for performing many similar tasks simultaneously (data parallel)



CPU vs GPU

Large Cache

Hide long latency memory access

Powerful Arithmetic Logical Unit 
(ALU)

Low Operation Latency

Complex Control mechanisms

Branch prediction etc.

Small cache

But faster memory throughput

Energy efficient ALUs

Long latency but high throughput 

Simple control

No branch prediction



Performance Characteristics

Source: NVIDIA Programming Guide (http://docs.nvidia.com/cuda/cuda-c-programming-guide)



Introduction and Context

Accelerators (CPUs vs GPUs)

NVIDIA Hardware Model



NVIDIA GPUs have a 2-
level hierarchy
Each Streaming 

Multiprocessor (SMP) has 
multiple vector cores

The number of SMs varies 
across different hardware 
implementations

The design of SMPs varies 
between GPU families

The number of cores per 
SMP varies between GPU 
families

Hardware Model

GPU

SM SM

SMSM

SM

Device Memory Shared Memory / Cache

Scheduler / Dispatcher

Instruction Cache and Registers



Tesla Range Specifications

“Fermi” 
2070

“Fermi” 
2090

“Kepler”
K20 

“Kepler” 
K20X

“Kepler”
K40

“Maxwell” 
M40

CUDA cores 448 512 2496 2688 2880 3072

Chip Variant GF110 GF110 GK110 GK110 GK110B GM200

Cores per SM 32 32 192 192 192 128

Single Precision 
Performance

1.03 Tflops 1.33 Tflops 3.52 Tflops 3.93 Tflops 4.29 Tflops 7.0 Tflops

Double Precision
Performance

0.51 TFlops 0.66 TFlops 1.17 TFlops 1.31 TFlops 1.43 Tflops 0.21 Tflops

Memory 
Bandwidth

144 GB/s 178 GB/s 208 GB/s 250 GB/s 288 GB/s 288GB/s

Memory 6 GB 6 GB 5 GB 6 GB 12 GB 12GB



NVIDIA Roadmap



GPUs are better suited to parallel tasks than CPUs

Accelerators are typically not used alone, but work in tandem with 
CPUs

GPU hardware is constantly evolving 

GPU accelerated systems scale from simple workstations to large-
scale supercomputers

CUDA is a language for general purpose GPU (NVIDIA only) 
programming

Summary


